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1. Introduction and descrivtion of the models. This paper

is devoted to the numerical study of two models of the inventory

problem. The first model is called the ordinary model. The second

is called the obsolescence model, and describes an extension of

the ordinary model in which the items in the inventory may become

obsolescence at any stage. "Obsolescence" will mean that the

item in question is no longer to be used and the stock on hand is

to be disposed of. It will be seen that the ordinary model is a

special case of the obsolescence model.

The intention of this piece of work is the modest one of

providing an explicit comparison, in one particular case, of

optimal inventory policies with and without the presence of

obsolescence probabilities. Additional numerical studies will

lend further insight into our obsolescence model, but above all,

analytic studies are needed.

In Section 2 we set up the recursion relation for the

ordinary model, and specify numerically the constants and component

cost functions. In Section 3 we do tha corresponding work for the

obsolescence model, introducing there a specific probability dirtri-

bution of time of obsolescence. The solutions of the problems of

finding the optimal policiies and optimum total cost functions in

these two models are presented in Section 4.



On both models the same number N of time periods is fixed

(N will be taken as 5 in our numerical wgork). These periods

will be designated as Jl9 J2 1 ... ,J, and the convention will be

adopted that period N is the earliest in time, period N - 1 the

succeeding period and period 1 the last period. Thus, the pertinent

time diagram is as follows, if we label the inventory points from

N to 0 with increasing time:

JN J
JN N-1 kl

N N-i 4-! 2 . . . k k-i . . . 0

FIGURE I

The ordinary N-period model begins a period JN with a primal

stock of items in the inventory. Denote by xN the size of the

primal stock, which may be axuy real number in general but may

be assumed to be nonnegative for this discussion. The primal

stock can be increased by N - xN units vhere YN != xN" The

quantity of Item in the inventory after ordering, nnimely y , is

called the starting stock for period N. During period N there

will be a demand for 'N units and it will be assum. that the

demand, which may be zero, al-ys occurs after any roplenisbment

FN - xN to the primal stock xN. For the folloiuing period, JN-1'
there will be a (poscibly vanishing) left over itock from JN,

called the initial stock for period JN-l' which will equal YN - N1

if this quantity is _ 0. But this quantity may be negative, and
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if so it will represent a shortage in the preceding period. If

indeed YN'"tNis negative, it will be assumed that any additional

items obtained to replenish the initial stock in period JN-l will

first be consigned to the - (YN unfilled units of dand

from the preceding period. The starting stock yN-I for period

JN-1 will be the initial stock yN - J. plus y,_I - (Y1 - CN)I

the amount by which the inventory is increased in period JN-l"

This procedure continues to. period J1 where the initial stock is

Y2 - 2' the remainder from period 2 and where the starting stock

Yl is initial stock Y2 - 2 plus Yl - (Y2 " 2 ) ' the replenishment

to the inventory. If items remain in the inventory after the

demand in period 1, i.e., if yl - tl > 0, the remainder will be

sold for salvage.

There are various costs associated with the models. The

cost of ordering quantities of thn item to augment the primal

and starting stocks is called the ordering cost. For both the

regular model and the obsolescence model the ordering cost will

consist of the cost of the items ordered plus a cost for placing

the order, the latter being called the setup cost. The cost of

failing to have an inventory at a fixed period large enough to

meet the demand of that period is called the penalty cost. The

cost of having a surplus at the end of a period after the demand

of that period is called the holding cost. These costs also

appear in the same fashion in the ordinary and obsolescence models.

Salvage cost, which is a negative cost, is, in the ordinary model,

the value of the remaining items if any at the end of period 1.

This definition of salvage cost for the ordinary model will be

modified for the obsolescence model. Finally, there is a discount

factor.
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On both the ordinary and obsolescence models the demands in

the successive periods are assumed to be independent and to be

identically distributed according to a known probability distri-

bution. Demand is nonnegative.

The obsolescence model for N periods begins initially like

the ordinary model. The primal stock xN is increased to the

starting stock y. and subsequently there is a nonnegative demand

iN" After the demand eN in period JN but before the beginning

of period JN-1, obsolescence may occur according to some known

probability. Uhen this occurs, any remaining items are sold for

salvage and no further orders or demands occur--the process stops.

If obsolescence does not occur, then at the beginning of period

JN-1 the initial stock y. - t. is increased to the starting stock

yN-l. After the demand tN-I in period JN-l but before the

beginning of period JN-2 obsolescence may occur with a certain

probability. If obsolescence does occur here, then any remaining

goods are sold for salvage. And so on, similarly.

It is clear from the above that salvage cost enters directly

in each period in which the probability of obsolescence is not

zero. When all probabilities of obsolescence are zero except

for period 1, the obsolescence model becomes the ordinary model.

The component cost functions and the distribution of demand

being known, the inventory problem is then to find an ordering

policy for the N periods which will minimize the total expected

discounted cost (but see Section 3). In the ordinary and obsolescence

models the "optimal" policies are of the (s,S) type.
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2. The recursion relation for tho ordi . Let Hn

oer-to the totn1 Mi.ooontod cost function for the n-period case,

n = 1, 2,... The total cost sustained will depend on the primal

stock, Xn, the successive demands in the n periods, in' r n-l'""l'

and the several starting stocks, yn, Yn-l' y1 " (As usual,

the "initial stock," xk, at tk is the stock level resulting at

the end of period Jlk+1, before stock-replenishment at tk, and the

"starting stock," aik, at tk is the stock level at the beginning

of Jk' after stock-replenishment at tk.; thus, Yk - xk is the

amount ordered for stock-replenishment at tk. ) Hence, the dependence

of Hn is explicitly represented by Hn(Xn; tn' tn-l''' ; Yn'yn-i'

...,Y ) •

If C denotes the replenishment cost function and 1 denotes

the holding-shortage cost function--which two functions are the

same for all periods--then evidently we have

(2.1) Hn(xn;enn-l,..., l;Ynyn.1 , .... yl) C(yn - xn )

+ l(Yn - n) + " n-l(Yn - 'n; n-l'n-2'' el; Yn-1'

for n= 2. 3.

where a is the discount factor. For every period Ja' k 1,2,.,.,n,

thc- f-lnctftbnla C and 1. are gjven by

(2.2) C(z) = CO " z + if 0
, if z = 0



(2.3) 1(z) §h -z for z t 0,

p.(-z)for z -,0,

where CO, h and p are constant unit costs, and K is the setup cost

for ordering.

The function Hl, the total cost function for the temporally

last period, Jl, is determined with the assumption of disposal

of left over items for a specified salvage value. If w denotes

the salvage gain function, then we have

(2.4) Hl(Xl;l;yl) = C(Yl-Xj) + l(Yi-o.) - w(Yl-Cl ) .

We take the function w to be characterized by a constant salvage

value per unit of left over item, say we; thus, w is given by

W'O ' z z > 0,
(2.5) w(z) = 0, z -C 0.

Now (as usual) we consider the yl, Y2 ''.'" yn in (2.1) re-

placed by functions Yl(xl), Y2(x2),...,Yn(Xn) of the respective

xk, these functions to be determined according to an optimal

principle, and thereby consLituting the optimal policy. If we

make this replacement, and for brevity set

ltn = (Yno Yn-l'"" lY)'

(2.6)

Hn(xn;tn,in-l,..., l;n) = Hn(xn;tn,en-l,..., l;Yn(xn),

Yn-l(xn.1), • • •Yl(xl)) o
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then from (2.1) we get--on regarding the Ck as random variables--

(2.7) c((x) n)CH7) ,(x,; Cn, n-.,., ;n -- C(y,,(Xn) - xn)]

+ 5 [l(Yn (x n ) - n)] + n

+ n _..(Yn(Xn)-n; ,.. 2,. l

where ' denotes expectation, and I n denotes conditional ex-

pectation given n

The optimum principle is that (2.7) shall be minimized by

suitable choice of 6n" If we denote this minimum by Cn(xn;l

then the customary argument gives, from (2.7),

(2.8) Cn(xn) = min ~jCE(Y-Yn)1+ L~~-"jaFnlyt)1y?=x n
for n = 2. 3 .....

and the minimizing value of y in (2.8) is the value of the

optimal component function Yn(xn).

The determination of Cl(xl) comes from (2.4); we find

(2.9) C1 (x 1 ) = minCJ: [C(y-xl)J + < Ll(y-tl)l - [j(Y'%.l

Together, (2.8) and (2.9) enable us to determine, successively

for n a 1, 2,..., the optimal component functions Yk(xk) and the

optimal expected cost functions Ck(x,).

In our case at hand we are concerned with a five-period

interval, and therefore we are interosted in (2.9) and in (2.8)

for n - 2, 3, 4 and 5.
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In the present numerical study we specialize to the following.

values for the constants characterizing our total cost function:

Co = replenishment cost per unit of item =

K = set-up cost for ordering =

h = holding cost per unit of item =

(2.10) p = penalty cost per unit of item = 6

.w - salvage value per unit of item 
=-1

a - discount factor = 1

and we take the demands in the several periods to be independent

and identically distributed, with density function p given by

(2.11) 
a(t) =

O, 4C0.

We then have

(2,12) [[C(y - X)j - C(y - X) - (y - x) + Ix(y)

where

(2.13) I(Y) - { if y > x

and 'IY(y-E)e + 6'o( d y 0,

(0 6f (-y)e_'d , y 1 0

I(1+ y + 130'Y), y 0 ,

S) :8(any k)6(1 - y), y ~o,
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Ind

(2.15) [Cn.(y-Cn_l(y- )ed,

and finally,

(2.16) - (y- )a- dC, y > O,0 y, 
y 

> 0,

- 1 + y + 0 ), y > 0,

0 , y : - O 0

Inserting these evaluations into (2.9) we get

(2.17) Cl(x) = min (y-x) + Ix(Y) 1 + Y + 7), y >

and inserting them into (2.8) gives

(2.18) C (X) = in (Y X)+Ix(Y)+ 
f1

[=m b 6(l - y), y < 0

+ fc Cn- 1(Y- 
t) e- d

With (2.17) we may now determine the optimum policy comuponent

YI and the optimum expected cost function C1 . Then, iteratively,

with (2.18) we determine Y2, C2,.". Y, -" By wel!-known

argumenta it follows that the optimum policy is an (3,S)-policy

in each period. In Section 4 we give the results of our calcu-

lations, and we have there tabulated the optimal sk and Sk,

k = 1, 2, ..., 5.
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The recursion relation for the obsolescence model. Let

N denote the number of periods in which we are interested. This

is specifically, in our present study, the number 5. For n = 1,2,

...,N, let -rn denote the probability that obsolescence occurs

in the interval Jn. The latter eventualities are disjoint, by

the nature of obsolescence. Furthermore since our inventory

process comes to an end in any case after period Jl, we can consider

the definition of obsolescence to be such that obselescence cer-

tainly occurs in J if it does not occur before. (Or, equivalently,

we may be given the datum that obsolescence, priorly defined,

certainly occurs within N periods, and thereby N is defined.) Thus,

we have

N(3.1) = 1.S)n- n

Let a) be a variable denoting the index of the period in

A
which obsolescence occurs, For n = 1, 2,..., N, let Hn denote

the total discounted (to the inventory point n) cost function

for the periods in' Jn-l'''" Jl This fnction -lepends on the

variables described in Section 2, but as well on the variable c.

And indeed the value of Hn(xn; nn-l,...,l YnYno-l,...,yl;( )
is deterained by the values of xn, n' %n-l'""'Y Yn' n-l''"

yW only.

The functions C, 1 and w, and the discount factor a are the

same as in the ordinary model. Recalling that when obsolescence

occurs in a particular period, any left-over quantity of the item

is sold for salvage, we see that in the present case the relation

between Hn and An-i is of the following form:



(3.2) Anf(xfl;,4nl, IO..D tl;YPY 1-s.*ylW)

-W~y_n), 
if cu n,

c(Yn~xn) + l(YnCn) A

for n = 2.-3....,.N

For n = , e-have simply:

(33) J(X1 ;,1 ;y;4) ro, if W 1,
(3-3 HC( y1-X1) + l(y1- 1) - W(y1- 1), if Ws - 1.

Let us denote the policy functions- -to be determined by an

optimality principle--by Y1 x) Y 2(x2),,".,YN(xN), and set

(3.4) OV'n= 0Yn' Yn_ l'"'kY,'

H X~nInl ...~ IO H Hn(xn)en~n-lP**.,.l;

Now, for the present model the question presents itself

w'hether the optipiization principle should be to minimize, as is

usual, the expectation

for n - ,2,..., N, or alternatively, to minimize the conditional

expectation
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for each n. On general grounds the latter principle seems the

more pertinent, the argument being that optimality considerations

for the periods Jn' Jn-1 '"'.,Jl ought not to give any positive

weighting to eventualities which, because they entail obsolescence

before the period Jn' involve no behavior within the periods

Jn' Jn-l''',"Jl • But in fact, in our specific model there is

no difference between the two principles. This is so because

the obsolescence probabilities vk are fixed and the quantities

which would get positive weighting under the first principle and

not under the second are in fact all 0, so that the weighting

is irrelevant. To see this more precisely, notice that by (3.2)

and (3.3) we have, for all n = 1, 2, ..., N, that An = 0 for

> n, and therefore (looking on the k and w as random variables)

N(37)Nnxn n ...- s,; nw = 7-1r-Hn(xn;in, n-l,..., l;

"r

n n"', -i/n;r)

n
n n Vr

-( 7rk) - z iTn '%I .. 1k=l r=l n
(r 

n; r). .

n/r

- cop

for n =-I. 2..... N.
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Thus, for each n, the expressions (D.5) and (3.6) differ only

by a constant factor, and therefore the minimization of one is

equivalent to the minimization of the other. (We are, of course,

tacitly assuming in all our deliberations here that the 7rk are

suitably nonvanishing. )
Replacing the Yk by Yk(xk) in (3.2) and taking expectations,

we get
A rk r1f-

(3.8) k= L n

+ El(Yu(n

-iT Ici)(Yn(x n  -

n-i AC, ilr(,n-l(Yn(kXn) - "n'&n-l'tn-2'''" l'[/h-l
r=l

n = 2, 3, ..., N.

This relation takes on a much more convenient form ven expressed

in terms of the conditional expectations (3.6). For brevity, let

A (n) denote the conditional expectation operator given w 5 n.

Then, on dividing (3.8) through by ( T k) and utilizing (3.7)--

both as it stands and with n replaced by n - 1--wa find that (3.8)

is equivalently expressed as:

f3-9 (n)A 10
(3-9) Hn(xn;Cn' n-l."" n; :  C(Y n (xn) xn)

+ 
A+ I(Yn(x ) "n) -n " Wn(Y(xn) - n)J

+ a (l - ,) (n l )A _n

A

... Il0VnTl;w),
for n = 2, 3,....N
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where

(3.10) "hdef nn

I rk
k=l

A

Then, if Cn(xn) denotes the minimum of (3.9), we have:

(3.11) an(x) = min C(Y-x) + tl(y-en))-ILn6 [W(Y-in)]
y=x

+ (i-P)ZC-l(y' n)j

for n = 2, 3, ... , N.

For n - 1, we. obtain

(3.12) 61(x) = min c(y-x)+ [l(y- l)J- rw-Y')J •

For each n, the minimizing y for a given xisrthe optimal policy

value Yn(X)

Substituting into (3.11) and (3.12) the detailed functions

and constants as specified in Section 2, we get:

(3.13) 81(x) -mi (-)'() 1 -++7-)yx 6(I - y), y ! 0

(notice that C1 is identical with Cl, given in (2.17)), and

' (-l+Y~l3 'G-y) f(-l+y+ ey), y>O
3.14) en(x) = min[ (y-x)+Ix(y)+L ,, y, -0

y>-x .Y + " -y), y -9 0

+ (1 -L r Cn 1(y-t)e- d;1

We see that the form of the problem here is the same as-in-thc .

case of the ordinary-model, there being simply the changes in

coefficients in the recursion rolation (3-.14) due to the gn.

Again the optimal policy is of the (s,S)-type for each period,

and in Section 4 we present the optimal sk and Sk .
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We shall carry out our numerical study for the set of values

of the 7Tk as tabulated below; we tabulate also the pk and the

quantities

def  5
(3.15) Nk Z V = probability that obsolescence occurs in

n=k mre of the periods J5, J4.9.'""Jk"

TABLE I

k wk - Nz k

1 1 1

2 5

1 1 1

4 2

1 1

graphically, these quantities look as follows:
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7/8

6/8

5/8
4/8"

3/8
2/8 ,, / '

1/8 7 -

4. h € Utioal resul . Thc results of carrying out

the minimizations in (2.17), (2.18) and in (3.13), (3.14) are

the following:

ORDINARY MODEL

(s1,S1 ) - (0.67295, 1.81915)

c 1(X) - (.652419 - ,, x , 0.67295

1 + 1 1 -x x tO .67295

(s 2 ,S 2 ) - (1.36731, 2.61030)

6.03523 x -< 1.36731

C2(x) -2 1x -x
i ,+ 10. 47669 aXJ. 6vxe x 9 1.36731
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(s 3 ,S 3 ) = (1.52891, 3.06648)

8.52142 - x x< 1.52891.

C3 (X) = -2 + + 11.20586 &x + 10.47669 e- x

+ 3.0333 eaX 2 x 1 1.52891

(s 4 ,S) = (1.51388, 3.34470)

11.04205 - ? x x < 1.51388

C1 (x) = 8.85475 - lc + 62:e~ 1.51388 : x . 1.52891

-313 + 1 X + 17.10608 -x + 11.20586 -'Xx

+ 5.23834 'X.2 + 1.02776 e-'xc,3

1.52891 < x

(s 5 ,S 5 ) = (1.42970, 3.77937)

13.64619 - ix x < 1.42970

11.37537 -ix + 61 e-x 142970 I x < 1.5.388

1 -x
8.68808 + 6x + 5.4319 e

+ 61 e yx 1.51388 1 x < 1.52891

- 51 + 2 x 21.35778 eGx + 17.10608 a'
x x

+ 5.60293 -x.2 + 1.74609 e'Xx
3

+ 0.25694 -x x 4' 1.52891 g x
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OBSOLESCENCE MODEL

(Sl,Sl) = (0.67295, 1.31915)

3.65249 - x 0.67295
Cl(X) =

- 1 + x o. 6 7 2 95

(s2,S2) = (1.19718, 2.4649)

5.49071 - ix x < 1.19718
c2(x) = _ ( x 13 c-x x

3 2-x + 9.39913 c + 4.625 c'Xx

x 1.19718

(s3$3) S = (1.4024, 2.8852)

7.49881 - ix x 1.4024

3  = - 1.53702 + 0.94443x + 10.83690 c-x

+ 8.35474 c-x, + 2.05553 e- x x2

x 1 . 4024

(s,$ 1 ) = (1.26515, 3.0228)

8.94219 - ix x 1.26515

6.37780 - 0.24270x + 6.43936 e
-x

Ac4(x) 1.26515 - x L4024

-2.46966 + 1.21183x + 13.40940 e
-x

+ 8.8653 c-% + 3.41784.a-xx2

+ 0.56059 ea'X 3 x t 1.4024



( 5P 5) = (1.11243, 2.82610)

9.15756 - jx x < 1.11243

6.32 4 + 0.65624x + 6.39585 Qox

1.11243 5 x < 1.26515

S4.15577 + 1.062304 + 6.66089e-x

+ 4.42706 C2xxl, 2 65 15 =- x 1.4024

-2.92635 + 2.06232x + 14.50318 e-x

+9.21896 e'Xx + 3.04 7 5 7e'Xx2  x > 1.4024

+0.78525 Qxx3 + O.09635 C-xx4

We summarize the critical numbers in thu following table

nnd graph:

TABLE II

Odinary M~odel 11 Obsoloscence Model

k

1 0.67295 1.81915 0.67295 1.81915

2 1.36731 2.61030 1.19718 2.46490

3 1.52891 3.06648 1.40240 2.88520

4 1.51380 3.34470 1.26515 3.02280

5 1.42970 3.77837 1.1124,5 2.82610
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NOTATION / s4

1) Ordinary model /
/

sk:/
sk: ------ -. /s4

2) Obsolescence model
ASk: ........ ,X'
Sk: X X X X 3 4 4- iF.,/ ,'3+  A-,C5

t5
/

/

S1

si

FU I

FIGURE III
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AThe domination of Sk by Sk and 8k by sk for k - 2, 3, 4P 5
reflect the possibility of termination of the obsolescence

model before period 1 and hence the need for smaller inventories.

The agreement of the costs functions CI(x) and 81(x) was noted in

(3.13) and is the reason for the agreement of A ith S1 and of

s I with sI . The concave properties of the sk-curve and the sk"
curve are a consequence of the fact the ordcring cost function
C( ) is not convex (see (2.2)). The concavity of the /Sk

curve is reflected in part by the relatively high ccnditional

probability of obsolescence in period 5 (see Table I).
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